Semi-Automated Surface Water Detection with Synthetic Aperture Radar Data: A Wetland Case Study
نویسندگان
چکیده
In this study, a new method is proposed for semi-automated surface water detection using synthetic aperture radar data via a combination of radiometric thresholding and image segmentation based on the simple linear iterative clustering superpixel algorithm. Consistent intensity thresholds are selected by assessing the statistical distribution of backscatter values applied to the mean of each superpixel. Higher-order texture measures, such as variance, are used to improve accuracy by removing false positives via an additional thresholding process used to identify the boundaries of water bodies. Results applied to quad-polarized RADARSAT-2 data show that the threshold value for the variance texture measure can be approximated using a constant value for different scenes, and thus it can be used in a fully automated cleanup procedure. Compared to similar approaches, errors of omission and commission are improved with the proposed method. For example, we observed that a threshold-only approach consistently tends to underestimate the extent of water bodies compared to combined thresholding and segmentation, mainly due to the poor performance of the former at the edges of water bodies. The proposed method can be used for monitoring changes in surface water extent within wetlands or other areas, and while presented for use with radar data, it can also be used to detect surface water in optical images.
منابع مشابه
The Object Detection Efficiency in Synthetic Aperture Radar Systems
The main purpose of this paper is to develop the method of characteristic functions for calculating the detection characteristics in the case of the object surrounded by rough surfaces. This method is to be implemented in synthetic aperture radar (SAR) systems using optimal resolution algorithms. By applying the specified technique, the expressions have been obtained for the false alarm and cor...
متن کاملMonitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data
Wetlands in semi-arid Africa are vital as water resource for local inhabitants and for biodiversity, but they are prone to strong seasonal fluctuations. Lac Bam is the largest natural freshwater lake in Burkina Faso, its water is mixed with patches of floating or flooded vegetation, and very turbid and sediment-rich. These characteristics as well as the usual cloud cover during the rainy season...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملDetecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR) Data
Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR) dat...
متن کاملHigh Resolution Mapping of Peatland Hydroperiod at a High-Latitude Swedish Mire
Monitoring high latitude wetlands is required to understand feedbacks between terrestrial carbon pools and climate change. Hydrological variability is a key factor driving biogeochemical processes in these ecosystems and effective assessment tools are critical for accurate characterization of surface hydrology, soil moisture, and water table fluctuations. Operational satellite platforms provide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017